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For the first time since Lord Kelvin’s original conjectures of 1875 we address and
study the time evolution of vortex knots in the context of the Euler equations. The
vortex knot is given by a thin vortex filament in the shape of a torus knot 7,
(p > 1,q > 1; p, q co-prime integers). The time evolution is studied numerically by
using the Biot—Savart (BS) induction law and the localized induction approximation
(LIA) equation. Results obtained using the two methods are compared to each other
and to the analytic stability analysis of Ricca (1993, 1995). The most interesting
finding is that thin vortex knots which are unstable under the LIA have a greatly
extended lifetime when the BS law is used. These results provide useful information
for modelling complex structures by using elementary vortex knots.

1. Introduction

Lord Kelvin was the first (see Kelvin 1875, p. 123, 916) to speculate on the
existence of vortex knots in ideal fluids and to conjecture that thin vortices in the
shape of torus knots were stable under the Euler equations. From a mathematical
viewpoint the question was left open, and it still represents a stimulating challenge to
mathematicians. In this paper we address Lord Kelvin’s conjecture by studying vortex
knot evolution under both the Biot-Savart (BS) law and the localized induction
approximation (LIA) equation, testing the stability results based on LIA analysis and
determining the long-term evolution of torus knots by direct numerical integration of
the governing equations.

Applications of ideas from modern topology to fluid mechanics have been pioneered
by Moffatt and co-workers (Moffatt 1969; Berger & Field 1984; Moffatt & Tsinober
1990; Moffatt et al. 1992; Moffatt & Ricca 1992; Ricca & Berger 1996; Ricca
1998), whose results clearly demonstrate the importance of the new techniques in the
study of knotted and linked structures in fluid flows. The existence of topologically
complex solutions to dynamical systems is well documented in the literature (see,
for example, Birman & Williams 1983; Holmes & Williams 1985), and the use of
geometric and topological methods in fluid mechanics has indeed proven to be very
useful in the analysis of the entanglement of filamentary vortex structures as observed
in direct numerical simulations of turbulent flows (see, for example, Kerr 1985; She,
Jackson & Orszag 1990; Vincent & Meneguzzi 1991; Jiménez et al. 1993). The most
advanced visiometrics (Zabusky, Silver & Pelz 1993; Fernandez, Zabusky & Gryanik
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1995) of streamlines and vorticity lines associated with the formation of coherent
structures reveal that a high degree of braiding, re-connection and formation of
new linkings of fluid structures is a generic feature of turbulent flows. The study
of complex flow patterns using topological techniques finds useful applications in
the study of filamentary structures present on a wide spectrum of physical scales,
from solar coronal loops in magneto-hydrodynamics (Bray et al. 1991; Berger 1993)
and tornadoes in geophysical fluid dynamics (Lugt 1983), to quantized vortex lines
in superfluidity (Donnelly 1991; Barenghi 1997) and superconductivity (Berger &
Rubinstein 1997). Yet, from a theoretical viewpoint very little is known of the
long-term evolution of topologically complex structures and of the influence of global
geometry and topology on the dynamics. There is therefore a call for more information
about these processes and their mathematical modelling.

Coherent structures, such as the thick vortex tubes present in classical fluids or the
thin vortex filaments in superfluid helium, can be thought of as made up of a bundle
of elementary vortex lines aligned along the tube axis. If the geometry of vortex lines
is responsible for the dynamics of a vortex tangle, topological properties represent an
important ingredient in the mathematical description of the flow field. Relationships
between geometric and topological properties are very subtle and very little explored.
Simple geometries of vortex flows (such as vortex rings) may have complex topology
in terms of the constituent vortex lines, while apparently complex tangles of vortex
lines may correspond to a trivial topology (an example of which is given by the simple
twist of a pair of trailing vortices). In a sense topological complexity can be regarded
as an additional feature of the flow field. A vortex ring with vortex lines twisted
about the torus centreline provides a good example of non-trivial topology of the
constituent flow field. The twisting of the vortex lines gives the structure topological
linking and contributes to the kinetic helicity of the vortex ring (Moffatt & Ricca
1992).

In mathematical terms topological complexity of field lines is realized through knots
and links. In the vortex ring case complex topology of vortex lines can be achieved
in two fundamental ways. One is through high twisting and linking of vortex lines;
the other is through knotting. Torus knots are good candidates to model complex
structures. Their geometry can be easily described in terms of closed curves wound
around a mathematical torus (for a proper definition of torus knots see §2), while
topology can be prescribed to achieve a high degree of complexity (useful to model,
for example, turbulent vortex tangles). Torus knots are also closely related to a class
of ‘unknots’ (i.e. unknotted closed curves given by a multiple folding of the standard
circle; see § 2 below), that provide interesting new test cases for studying the evolution
of vortex geometries. In this paper we shall study the time evolution of thin vortex
filaments in the shape of torus knots and related ‘unknots’.

A coherent bundle of vortex lines, either knotted or linked together, has a decidedly
non-trivial topology. In the context of the Euler equations, vortex structures move
while conserving the topology of the system. This is a fundamental property of inviscid
evolution and is encapsulated in the formal integrals of the Cauchy equations. In the
absence of viscosity vortex lines are free to move in the fluid, preserving the knot
and link types that tie them together. Since topology is ‘frozen’ in the fluid, vortex
evolution is influenced by the topology of the system.

In real fluids, though, the presence of viscosity and dissipative effects allows recon-
nections of vortex lines to take place, and in the presence of reconnections topology
is bound to change. However, as long as vortex elements are not too close to one
another, Euler’s equations still provide a good approximation to real vortex dynamics.
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In many practical situations, where vorticity is highly localized, coherence of vortex
structures survives for a considerable time. In these cases vortex filaments can be
considered as ideal entities, governed by an evolution that is still little influenced
by viscous effects. As vortex elements come into contact, dissipative effects become
dominant over coherence and can no longer be neglected. Under reconnection we
have a sudden, dramatic change in the geometry and topology of the flow pattern.
An accurate model of the reconnection mechanism must take into account detailed
information about the physics of the fluid and the viscous processes involved. We have
a similar situation when we consider the interaction of fluid structures in electrically
charged plasmas, which are important for geophysical and astrophysical applications.
In this case dissipative effects are given not only by viscous forces, but also by resistive
effects present in the fluid medium (Bray et al. 1991). Vortex interaction in superfluids
is also an important phenomenon. Here superfluid vortex lines interact according to
the laws of quantum mechanics (Koplick & Levine 1993). In this case the inviscid
model is still a very good approximation at a macroscopic level, that is as long as the
typical interaction scale length is greater than the quantum mechanical healing length
(of the order of 1071 m).

In ideal conditions vortex motion is governed by the Biot-Savart law (BS) (see
Batchelor 1967; Saffman 1992), which is a global functional of vorticity. Consider an
isolated vortex line € of strength I', embedded in a domain 2 < IR? entirely filled
by an ideal, incompressible fluid. The vortex line moves with a self-induced velocity
u(X) (X is the position vector in IR?), given by

I [1x(X—R())
/
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where X = R(s) is the vector equation for %, s is arclength and 7 = dR/ds the
unit tangent along %. Equation (1), which governs the Euler evolution, retains all
the induction effects associated with the whole geometry of ¥ and preserves vortex
topology. Explicit analytic solutions to the BS law are difficult to obtain and until now
only circular and helical geometries have been studied in detail. Moreover, numerical
simulations based on (1) are rather expensive to run because the motion of each
single vortex point depends on the motion of all the other constituent points into
which the vortex line is discretized. To overcome these difficulties several asymptotic
techniques have been proposed, and work in this direction is still in progress (see, for
example, the comparative study carried out by Zhou 1997 on the implementation of
various asymptotic techniques).

The crudest approximation to the BS law was derived by Da Rios almost a century
ago (see the review article by Ricca 1996), and is based on the so-called localized
induction approximation (LIA). By neglecting non-local (long-range) effects and self-
interactions of different parts of the vortex, LIA gives a first-order approximation to
the motion of the vortex filament. Under LIA the motion is essentially governed by
local curvature effects and in the limit of very thin vortex filaments this is given by

r re. .
ia = —InoR x R' = - 1ndb, )
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where ¢ and b are the curvature and unit binormal vector of %, and 6 is a measure of
the aspect ratio of the vortex. Here we consider only thin vortex filaments, hence we
take 6 = const. > 1. Because of the approximations involved, the LIA is of limited
applicability in classical vortex dynamics. However, we should remember that also in
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the numerical implementation of the BS law we still have the problem of a logarithmic
singularity, present in the integrand of equation (1) when X approaches R. In this
case the standard procedure, which we shall follow (see §3 below), and that is used
extensively in the literature (see, for example, Leonard 1980, 1985; Moin, Leonard &
Kim 1986; Leonard & Chua 1989; Fernandez et al. 1995), is to de-singularize the BS
integral by using a cut-off length [, substituting the singular BS part with the corre-
sponding LIA dynamics. In a sense, the cut-off length plays the role of a smoothing
mechanism for the physics of the singularity, where viscous, resistive or quantum
effects are dominant. We should remember, however, that there are physical contexts
in which the LIA represents a good approximation. The LIA indeed finds useful
application in studies of filament dynamics for defect formation in micro-physics (Lu-
gomer 1998), and in modelling helium superfluid turbulence, where long-range effects
tend to cancel each other out (see the discussion in Barenghi et al. 1998). Moreover,
the mathematical simplicity of the LIA offers considerable analytical and numerical
advantages to exploit, one of these being the study of knotted vortex structures.

2. Torus knots as steady solutions to the LIA equation

The only analytical results on vortex knots are based on the LIA equation applied
to thin vortex filaments in the shape of torus knots. In their standard representation
torus knots are particularly symmetric knots embedded in a mathematical torus IT.
Let us recall a fundamental theorem of Massey (1967):

THEOREM 1. A closed, non-self-intersecting curve embedded in I, that cuts a meridian
at p > 1 points and a longitude at q > 1 points (p and q relatively prime integers), is a
non-trivial knot 7,4, with winding number w = q/p.

The winding number w is a topological invariant of the knot type and is a measure
of the average number of wraps of the knot along the small circle of the torus IT
(in the meridian plane), per number of wraps along the torus circular axis (in the
longitudinal plane). For given p and ¢, the two knots obtained by exchanging p and ¢
are topologically equivalent, i.e. 7,, ~ Z,,. This means that for fixed p and ¢, 7, , and
T, represent the same knot and can be deformed one into the other by continuous
deformations (i.e. without cuts; see the two examples of figure 1a). However, when
p=1and/or g = 1, the closed curve is not knotted (the curve is called the ‘unknot’),
since it can be isotoped by continuous deformations to the standard circle (the
standard unknot %,). From a geometric viewpoint the unknots associated with the
family of torus knots are interesting curves. We can group them into two distinct
families: ‘toroidal’ coils (denoted by %,,; in figure 1b), and ‘poloidal’ coils (denoted
by %1,,). For given m, %, is equivalent to a closed curve wrapped around I1 m times
in the longitudinal direction and only once in the meridian direction, whereas %, is
a closed curve wrapped around IT m times in the meridian direction and only once
in the longitudinal direction. Evidently, these unknots are all topologically equivalent
to the standard circle, i.e. Uy ~ Ui ~ Uo.

Vortex knots, unlike their mathematical counterpart, are dynamical objects that
evolve under the laws of vortex motion, prescribed by the Euler equations, which
govern the motion of the physical knot. Here an interesting question is whether a
given vortex torus knot type can evolve freely to its own corresponding isotope. Since
vortex dynamics is determined primarily by geometric aspects, different geometries of
the same vortex knot type may lead to different configurations. In the case of LIA,
the dynamics can be re-written by appropriate re-scaling of time in the simplified
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FIGURE 1. (@) Two different geometries of the trefoil knot. In terms of the topological classification

of knot types this represents the first member of the family of torus knots 7,,: the standard form

is given by the 7,3 knot on the right, which can be isotoped by continuous deformations to the
T3, knot on the left. These two knots are topologically equivalent, hence they represent the same
knot type. (b) The standard circle (the ‘unknot’ %,) can take the shape of a toroidal coil %,,;, or

a poloidal coil %,,,. In pure topological terms, though, all the unknots are equivalent to trivial
objects.

form

Upa = CE. (3)

We have the following theorem (Kida 1981):

THEOREM 2. Let A, denote the embedding of a knotted vortex filament in an ideal
fluid in . If A, evolves under LIA, then there exists a class of steady solutions in the
shape of torus knots A, = .

Kida finds solutions in terms of fully nonlinear relationships that involve elliptic
functions of travelling waves. A more direct and simple approach (Ricca 1993),
based on linear perturbation techniques and cylindrical polar coordinates (r,, z),
gives ‘small-amplitude’ torus knot solutions (asymptotically equivalent to the Kida
solutions), that are more easily handled analytically and numerically. These solutions
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are given by
r =1y + ek, sin (W + o),

k,
o= + eg—— cos (W + ¢y),
ro Wro (4)

A

1/2
z = L + eok, (1 — 2) cos (we + o),
ro w
where ry is the radius of the torus circular axis and ¢y = a/ry < 1 is the inverse
of the aspect ratio of the vortex, with a the radius of the vortex cross-section and
k., = O(ro) a scale factor. Moreover ¢ = (s — kt)/ro, with ¢ time, k the wave speed; ¢
is time re-scaled with the vortex circulation and ¢ a constant.

An immediate consequence of (4) is the following linear stability result (Ricca
1995):

THEOREM 3. Let F,, denote the embedding of a ‘small-amplitude’ vortex torus knot
A, evolving under LIA. 7,, is steady and stable under linear perturbations iff
q>pw>1).

This represents the only known, rigorous result on stability of vortex knots and gives
us the motivation to test and carry out numerical experiments on the dynamics of
these knots. Remember that equations (4) are not the exact, fully nonlinear solutions
to the BS law, but they represent small-amplitude knot solutions to LIA. Anyway,
since (4) represent torus knots in physical space, we can also use these equations
to investigate vortex knot behaviour under the full BS law, using a code that takes
into account global induction effects. Hence, we take equations (4) and (by replacing
(1 — 1/w?) with |1 — 1/w?| to also allow the study of knots with w < 1) we run the
appropriate code not only under the LIA equation (so that we can check the result
of Theorem 3), but also under the full self-induction law given by the BS integral.
Evidently, a numerical investigation of the time evolution of vortex knots (using BS
or LIA) is not equivalent to studying the stability of these structures: here we do not
take a basic solution and study its perturbation to determine whether infinitesimal
disturbances decrease or grow exponentially with time. Rather, we integrate in time
the (approximate) knot solutions to the LIA, by letting them evolve under non-local
(BS) and local (LIA) self-induction effects. One obvious drawback associated with
the use of numerical codes is the (unavoidable) presence of numerical noise, which
clearly limits the integration process.

In spite of these limitations, the numerical study can give us some useful insight into
the evolution of topologically more complex structures. We should remember that so
far we have no direct, experimental evidence of existence of vortex knots. To make
progress beyond Theorems 2 and 3, we need to test these results and check whether
vortex knot evolution reveals features that are dynamically significant. In particular,
we would like to find out how robust is the evolution of these knotted vortex filaments,
to what extent these structures evolve by conserving topological and geometric features
of physical interest, and when they unfold and break up. The question then arises
of whether these vortex structures evolve by preserving a ‘geometric signature’ that
makes them recognizable in terms of their original configuration. Dynamics that
preserve topology and geometric features such as mean curvature, mean torsion,
writhing number, asymptotic crossing number, etc., while allowing large-amplitude
deformations, have not been studied before and there is a lack of rigorous definition
and analysis. Here we would like to propose a new definition of stability in relation
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to these kind of evolutions. If we take into account large-amplitude perturbations,
for example, we can extend the usual concept of Lyapunov stability to include
those dynamics governed by geometric signature-preserving flows. The corresponding
motion is characterized by finite, large-amplitude (Lyapunov) stable evolutions that
maintain their geometric coherence and signature for some (finite) time of physical
interest. Hence, we can talk of vortex structures evolving under ‘stable’ dynamics
according to the following

Definition. A vortex structure is said to be (Lyapunov) stable if it evolves under
signature-preserving flows that conserve topology, geometric signature and vortex
coherency.

Stable structures are therefore those able to travel a considerable distance (much
larger than their typical size), while preserving their geometric signature for some
finite time. If they unfold and break up in a short time (compared with the typical
time scale), we shall call them unstable. Our task will be to detect whether there are
stable evolutions of vortex knots of physical significance.

3. Numerical study of the evolution of vortex knots

To investigate the evolution of torus knots using the LIA and BS law we use
an algorithm that sub-divides the initial vortex configuration into N points. The
evolution of the vortex is obtained by integrating the equation of motion in time
at each point. The algorithm and the computer code that involve the simultaneous
adjustment of the N points and the time-step size (as well as tests of the computer
code itself) have been discussed extensively in the literature (Schwarz 1988; Aarts &
deWaele 1993). As in the pioneering work of Schwarz (1988), the code has been used
to study the dynamics of tangles of vortex lines in superfluid turbulence (Samuels
1992) and other aspects of vortex dynamics in superfluid helium (Barenghi et al. 1998;
Samuels, Barenghi & Ricca 1998) and in classical turbulence (Samuels 1998). For the
present simulations the typical time-step values range from 0.01 to 0.03, but they can
take values of the order of 0.001 in the vicinity of self-intersecting vortex lines, with
N ranging from 100 to 400, depending on the knot type. In some runs, in which we
measure the time T, elapsed at the occurrence of the first self-intersection (see §4
below), we find that doubling N from 400 to 800 produces only a 1% change in Ti..

The numerical study is carried out for the first few torus knots, such as 7,3
and J34 and their isotopes, for €, ranging between 0.1 and 0.01. A more extensive
investigation of knots with higher crossing number is limited by the larger number
of mesh points needed to represent these knots. However, for the knots examined the
results show generic features and the same qualitative behaviour. The calculation is
non-dimensionalized by choosing the radius of the torus circular axis ry = 1, which
sets the length scale, and the vortex filament strength I' = 1, which sets the time
scale. This leaves the problem of choosing an effective core size rq. for the vortex
filament. This core size is specified in the LIA equation (see (2) and (3) above), where
its choice is related to the choice of the time scale. The effective core size plays a
more subtle role in the BS calculation, where it is used to eliminate the singularity
present in the line integral (equation (1)), when X approaches R. A standard cut-off
technique is used to de-singularize the BS integral. The integral is split into two parts:
a local term, which represents the integral between two neighbouring mesh points at
the singularity location and gives an induced velocity u,; and a non-local term, which
represents the regular part of the integral and gives an induced velocity u, so that
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u = uy + uy. Following Schwarz (1985), the local term is given by

2(1,1)"?

C rcore

: (3)

where [, and [_ are the distances to the nearest neighbouring point. This choice for
the local term gives the correct velocity for the osculating vortex ring. The constant
C is determined by the choice of the core model: it is of order 1 and can be absorbed
into the definition of the effective filament core size ¢, Which is not an important
parameter in these simulations. We normally run the code with a very small core
parameter (reore = 107%), and we have done tests where the core parameter was
increased up to rere = 107* While the velocity changed in these tests, as it should,
the qualitative behaviour of the knot evolution and the shape of the knot did not
change.

To measure the changes in the knot shape and the degree of stability we introduce
the concept of geometric growth of the radius of the torus circular axis in the (X, Y)-
plane (‘XY -growth’) with time. The geometric growth is measured by Ae = € — ey,
where

r
= 2—(R x R")ln

€ — RXYmax - RXYmin, (6)
2
Ryymax(Rxymin) denoting the maximal (minimal) distance of the knot from its centre
of symmetry (placed at the origin r = 0) in the (X,Y)-plane. Measurements of
geometric growth will give us precise information about the geometric coherence of
these vortex structures.

3.1. Evolution under the localized induction approximation (LIA) law

The evolution of vortex knots under the LIA equation is illustrated in the time
sequence of figure 2. We find that vortex structures evolving under LIA behave in a
way which is consistent with the stability criterion given by Theorem 3. For winding
number w > 1, the knot is steady and stable, travelling along the z-axis for about 20
diameters (corresponding to about 23 time units) until numerical noise de-stabilizes
the structure. For winding number w < 1, instability sets in almost immediately,
leading to the unfolding of the vortex knot (see the time sequence of figure 3). The
knot travels along the z-axis for not more than two diameters (notice the values of
the z-coordinate), while unfolding irreversibly until the occurrence of the first knot
self-intersection: at this point LIA becomes ill-defined and the calculation must be
stopped. This evolution takes place in the first few time units.

The XY -growth is shown in figures 4(a) and 4(b). The instability seems to grow
with a very clean power law, with power close to 2, until numerical errors become
dominant. It is interesting to notice that we have similar results for the evolution of
the unknots. For example we find that %3 retains its shape for a considerable time,
whereas the corresponding toroidal counterpart %;; (w = %) unfolds immediately,
following the same power law as for the other knot types tested. A summary of these
results is given in figure 4(a), where the characteristics of the dynamics investigated
are shown to be generic and independent of the specific knot type tested.

For larger values of €y (= 0.1), the theory based on LIA is no longer applicable.
However, the numerical analysis carried out has shown that these structures are much
more robust and stable than previously thought. This means that an extended LIA
theory (based on higher-order asymptotics) should be able to capture even ‘large-
amplitude’ knot configurations as new steady and stable initial conditions for vortex
motion.
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FIGURE 2. Computed evolution of 7,3 under the LIA. The knot moves while maintaining its shape
in a stable manner, which is consistent with Theorem 3. Snapshots of the vortex knot evolution are
shown at three different times ¢y > t; > t,. Note the different values of the z-coordinate. In order to
visualize over- and under-crossings a mathematical tube of radius 0.04 is centred on the knot axis.
This tube is merely a visual aid, whose geometry has nothing to do with the real core cut-off size.

3.2. Evolution under the Biot—Savart (BS) law

When a given knot evolves under the full BS law we observe a very different behaviour.
Figures 5(a) and 5(b) show a comparison of 7,3 (w = %) and 73, (w = %) under LIA
and BS evolution, for ¢y = 0.01 and 0.1 (LIA), and ¢y = 0.1 (BS). Remarkably, we find
that both the knot 7,3 and its isotope 73, (with winding number w < 1) maintain
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FIGURE 3. Computed evolution of 3, under LIA. The knot unfolds, which is consistent with
Theorem 3. The last picture of the time sequence (at time ;) shows the unfolding knot approaching
a self-intersection (same visualization as for figure 2).

their shape under the BS law for a long time, travelling without unfolding for about
20 diameters, until numerical noise sets in. The visible ‘wiggling’ in the plots (which
is particularly enhanced in the case of the BS law) is a signature of the oscillatory
geometry of the knot. This behaviour appears to be independent of filament core size
and discretization parameters (we have run the code for different N) and we did not
find any significant difference for the other knot types tested.

Vortex torus knots evolving under the BS law are clearly ‘stabilized’ by global
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FIGURE 4. LIA evolution. The dynamical instability of vortex knots is measured by the ‘XY -growth’
given by the variation of Ae with time. Vortex structures are found to be LIA-stable when their
winding number is w > 1 and LIA-unstable when w < 1, which is consistent with the prediction
of Theorem 3. (a) The growth in €, for the torus knot 73, (w = 2/3) with initial ¢ = 0.1 and
€o = 0.01. (b) The growth in ¢ for the knots 73, (w = 2/3) and 43 (w = 3/4), and for the
(unknotted) toroidal coil %3, with initial €y = 0.1.
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FIGURE 5. BS evolution. Comparative behaviour of (a) 7,3 and (b) I3, (€9 = 0.1) under the LIA
and BS law: the knot 753 (w = %) travels under both the LIA and BS law without change of shape

for about 20 diameters, until the numerical noise sets in. The knot 73, (w = %) unfolds under LIA
(as predicted by Ricca 19995), but is stabilized when its evolution is governed by the BS law. Under
LIA the unfolding takes place almost immediately.

geometric effects. This stabilizing effect is due to the BS integration (figure 5b) and
is the main result of these calculations. A three-dimensional view of the BS knot
evolution is given by the time sequence of figure 6. The motion is the sum of two
contributions: one is due to a propagation velocity that makes the whole structure
translate in the fluid; the other is due to a rotational velocity that makes the individual
vortex strands rotate around their centre of mass (which lies in the meridian plane on
the torus circular axis) and around each other. This second contribution is difficult to
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FIGURE 6. BS evolution of 73,. The knot evolution is rather stable and the vortex travels a large
distance (see z-values at time t,) before the numerical noise sets in (same visualization as for figure
2).

detect from the plots of figure 6, but it is very clear from the moving pictures of the
vortex evolution.

Does the stabilizing effect of the BS law depend on €;? Figure 7 shows the evolution
of 773, for different values of ¢, under both the BS law and LIA (for comparison). In
this case geometric coherence is measured by the time T, elapsed at the occurrence
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FIGURE 7. The time Ty elapsed until the occurrence of the first self-intersection (proportional to
the distance travelled by the knot along the z-axis) against the original e for the LIA (circles) and
BS (squares) evolution. Note that the plot is on a logarithmic scale.

of the first self-intersection, which leads to the following re-structuring and unfolding
of the vortex knot. For ¢, > 0.2 geometric coherence is definitely lost and the BS law
is no longer able to guarantee stable evolution. Under LIA the power law dependence
of T (the straight line on the log-scale diagram) indicates that ey is in fact the
parameter that controls the stability of the structure (in agreement with Ricca 1995),
whereas under the BS law we find a critical threshold value at €y = 0.1, above which
stability is lost. When € is small, vortex line elements are so close to each other that
a large number N of discretization points is needed. In principle the BS integration is
an N? operation, because the motion of each point is determined by the position of
all the others, but in practice the computer time required for the calculation increases
even faster than N? (this is because the time step decreases in proportion to the mesh
size, so that the distance travelled during one time step remains significantly less than
the mesh size).

What is the reason for the BS stabilization? A possible explanation may be found in
the cooperative swirling motion of the co-rotating vortex strands (see Saffman 1992,
§12.2). In the first stages of the evolution the individual vortex strands are very close
and nearly parallel to one another. Under the BS law these elements rotate about
one another, orbiting about their centre of mass (in the meridian plane), a motion
that is completely missed by the LIA. This motion makes the vortex structure rotate
on itself, as if the whole structure were subject to a virtual twist. This corresponds
of course to the familiar rotation of smoke rings. From figure 3, which illustrates the
LIA unfolding of the unstable knot, one can see that this process is due to the faster
motion of the high-curvature elements of the vortex filament in the interior region
of the knot, relative to the slower motion of the low-curvature elements in the outer
region. Under the LIA we have no rotation of the individual strands and the motion is
simply a translation in the binormal direction. When the knot translates and rotates
on itself, though, these inner and outer parts of the knot exchange places during
rotation. If their rotation is fast enough, it can average out the translational velocity
of the vortex, leading to a more uniform motion of the filament and a stabilization
of the vortex knot (a mechanism that resembles the co-rotating vortex pair stability
to long-wave disturbances investigated by Jiménez 1975).
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An estimate of this rotational velocity (Vy) is given by considering the rotational
velocity of p straight vortex lines equally spaced on a circle of radius €. This gives

Viot =~ pI /4mey. (7)
An estimate of the translational velocity (Vyans) of a vortex ring of radius ry gives
r 8r
Vieans ~ —— In —. (8)

47ry  Feore
The ratio of the two velocities is
Vit Fop
Vieans  €010(870/eore)’

©)

For p = 3 and rere = 107% we have Vio/Vians > 1 when e < 0.15r; (i.e. rotation
dominates), and this is remarkably close to the data shown in figure 7.

The fact that the BS evolution may differ significantly from the LIA evolution
provides a clear demonstration that the LIA law is not appropriate to investigate
the long-term behaviour of complex flow dynamics. From a computational viewpoint
the identification of flows which require the BS law also has important practical
consequences in the implementation of effective numerical codes.

4. Conclusions

We have performed numerical investigations of the evolution of vortex knots under
both the LIA and the BS law. When the parameters are close to the vortex knots
of Ricca’s theory, we find that vortex knots either translate while maintaining their
shape, or unfold immediately, in a way which is consistent with Ricca’s stability
theory. We have also observed that the way in which the knots unfold (see figure
4) appears to be independent of the topology: all unstable torus knots and unknots
show the same power law growth in amplitude.

The most important result is the discovery of a strong stabilizing effect of the BS
law. Although we find that knots eventually unfold, the time which elapses and the
distance over which they travel before breaking up is very large and has physical
significance. This finding suggests that it is worth trying to create vortex knots in
the laboratory. For relatively large values of €y we have found cases (see figure 4) in
which the BS evolution is almost identical to the evolution under LIA. These results
will certainly stimulate more numerical work and, above all, the search for a new
analytical theory for the existence of steady and stable vortex knot solutions to the
Euler equations.

From a physical viewpoint, then, these results shed new light on the evolution
of complex structures, and are useful for future modelling of turbulent flows. Our
measures of the geometric coherence of vortex knot dynamics clearly show that there
are complex flow fields resistant to re-structuring, which is a very important feature
in relation to the role and decay of helicity in turbulent flows (Moffatt & Tsinober
1990).

Finally, we would like to point out another result that comes out from these
numerical simulations: torus knots with winding number w < 1 are in general
unstable and evolve under the BS law towards a reconnection event (although in
the case of thin filaments this might take place on much longer time scales). This
result is significant in view of the great interest in the formation of singularities in
Euler’s equations (Kerr 1993; Fernandez et al. 1995; Grauer & Sideris 1995; Greene
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& Boratav 1997). Our work shows that vortex knots are a simple and effective means
for investigating mechanisms of singularity formation in ideal fluids and other related
questions.
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